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Abstract: This report investigates the correlation between theoretical predictions and experimental 

results of a damped harmonic oscillator using a self-build pendulum setup. The principal objectives 

are investigating the pendulum’s period dependency or independency on both amplitude and string 

length, calculating the rate of energy loss quantified by the Q factor using two distinct methodologies, 

and finding any correlations between Q factor and pendulum string length. Results on the amplitude 

range where the period is considered as constant, the alignments and disagreements between Q factors 

calculation from two methods on different string length, and the impact of string length on 

pendulum’s period are demonstrated and analyzed. The experimental results, though somewhat 

aligned with theoretical predictions from damped harmonic motion equations, exhibit notable 

discrepancies which are discussed in terms of experimental setup limitations and measurement 

uncertainties with mathematical reasoning.  

1. Introduction 

Pendulum is a simple system consist of a heavy mass suspended at the end of a freely rotating 

spring. We can model the damped harmonic motion of the pendulum using equation [1],  

 𝜃(𝑡) =  𝜃0 𝑒
−𝑡

𝜏 cos (2𝜋
𝑡

𝑇
+ 𝜑0) (1) 

where 𝜃0  is initial amplitude, 𝑡 is time, 𝜑0  is phase constant, T and τ are constants that are 

dependent on pendulum setup. The familiar version of above equation is 𝜃(𝑡) =  𝜃0 cos (𝜔𝑡 +
𝜑0),where angular speed 𝜔 equals [2]: 

 𝜔 =
2𝜋

𝑇
 (2) 

One important characteristic of damped harmonic oscillator is its period is amplitude independent 

for small angles. In this report, we will investigate the amplitude independent threshold; using two 

methods to calculate the rate of energy lost – Q factor and compare if methods agree with one another; 

then determine length dependency of period. The goal is to conclude whether the provided theoretical 

equations and predictions of pendulum characteristics match the experimental results. 

1.1 Equations for Q Factor Calculation 

Q factor can be calculated using the approximate oscillations required for a pendulum system to 

decay to 𝑒−2𝜋, or 0.2% of its original energy by 2 methods: finding τ through applying mathematical 

model using equation (1) and counting oscillations. As we plot the period versus amplitude data, it 

reveals an exponential decaying sinusoidal pattern. Therefore, to fit the practical experiment, we need 

to introduce the envelope function [1],  

 𝐴 = 𝜃0 𝑒
−𝑡

𝜏  (3) 
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which describes how amplitude decays with time. It is a smooth curve connecting the maximum 

amplitude providing by 𝜃(𝑡) in equation (1). A more general form to describe the trend of changes 

in amplitude is: 

 𝐴 = 𝑎 𝑒𝑏𝑡 (4) 

leaving 𝜏 =
−1

𝑏
. Using another equation [3]: 

 𝑄 =
𝜏𝜔0

2
 (5) 

we can calculate the Q factor numerically by fitting data points in Python program (see Appendix) 

to find constant b value.  

In addition, decay in amplitude in one cycle can describe as 𝑒
−(
𝜋

𝑄
)
 [3]. After 

𝑄

𝜋
 cycles, the 

amplitude will decay to 
1

𝑒
. If amplitude decays to 46%: 

 
𝑥

𝑒
= 0.46  →   𝑥 ≈ 1.25 (6) 

 𝑁 =
𝑄

1.25𝜋
=

𝑄

𝑥𝜋
 

we can then count number of oscillations N to derive Q factor.  

1.2 Period Dependency on Amplitude 

Theoretically, any unknown relationships could be modeled as polynomial:  

 𝑇 = 𝑇0(1 + 𝐵𝜃0 + 𝐶𝜃0
2 +⋯) (7) 

by increasing the number of terms. Plotting data into Python program will give values of B, C … 

and their corresponding uncertainties. When constant terms are less than double of their uncertainties, 

𝑇 ≈ 𝑇0. From experiment, period is amplitude independent only within range of −20 ~ 30 ±  1°.  

1.3 Period Dependency on Length 

The theoretical period could be described using equation [4]: 

 𝑇 = 2𝜋√
𝐿

𝑔
≈ 2√𝐿   (8) 

In general, it is a power relationship:   

         𝑇 = 𝑘𝐿𝑛 (9) 

where 𝑘 = 2.0 𝑠2𝑚−𝑛and 𝑛 = 0.5. This relationship could be further verified by taking log on 

both sides, which gives slope 𝑛 and y intercept ln(𝑘): 

 ln(𝑇) = ln(𝑘) + 𝑛ln (𝐿) (10) 

When released angle is smaller than amplitude independent threshold, experiment does agree with 

above equations. However, equation (8) returns greater derivations than actual period as amplitude 

increases. 

1.4 Q Factor Dependency on Length 

Through controlling the released amplitude and only changing the spring length, list of Q factors 

was calculated using two methods. Results were plotted into 6 general equations and turns out only 

modelling Q factors have a power law relationship with length, while Q from number of oscillations 

have little association to any possible relationships. Therefore, two methods do not agree with each 

other either due to human errors discussed in section: Uncertainties in Data Collection, or different 

representations of changes in τ discussed in: Dependency of Q Factor on Length, or both. Q factor 

does not reveal any other strong association with length except indicating as length increases, Q factor 

decreases.  
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2. Experimental Method 

The original pendulum setup is shown in figure 1. A sewing thread with mass smaller than 0.2g 

was connected to a nail drilled into the wood to a 52.6 ± 0.5g cylindrical object. Figure 2 indicates 

object dimensions. 

 

Fig 1. Pendulum setup 

A 1080p HD at 30fps iPhone 7 Plus camera was used to track motion, which was placed 60 ± 1cm 

in front of setup. A straight line marked with pink highlighter acted as a reference to identify if mass 

has passed central line for data recording. String was hanged 1.9 ± 0.1 cm away from wood to leave 

just enough space for the travelling object. A light source is placed at the front of the pendulum to 

create shadow of string on paper. The shadow is used to determine whether the recording device is 

placed right at the central line, and the accurate angle measurement is based on using the shadow 

projected on paper to find a parallel line on the protractor. The position and angle of the pendulum 

was obtained by using the Tracker software [5]. The raw data collected was then processed in the 

provided Python program to find the best correlation to describe the dependency of period on 

amplitude and length and its relationship with Q factor of a pendulum system.  

 

Fig 2. Dimensions of the object being used. Note dimension is not in-scale due to camera angle 

However, the potential experimental error caused by the original setup was identified and 

discussed in section: Experimental Setup Deficiency. To reduce these uncertainties, a new setup was 

established as shown in figure 3. Another wooden stick was attached to the platform with a pinned 

nail to the same height as the nail on top of the old wooden stick. Two strings are attached on object 

and tied to two nails to eliminate self rotation and force the object to travel in one 2D plane. The 

width of spring has adjusted to 0.5 ± 0.1𝑚𝑚  to increase its visibility in recorded videos. The 

experimental environment is explicitly set with little air turbulence and minimized natural light 

sources to reduce other variations.   
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Fig 3. New modified pendulum setup 

The length from mass centre to nails is fixed by taping springs at back of sticks. To change the 

length, it requires pulling the strings manually until the object reach desired height and retape the 

strings. 

Angle and length uncertainty for the first determining amplitude dependency lab, ± 1° and ± 1 

mm has modified to ± 4° and ± 4 for the second determining length dependency lab due to changes 

in pendulum length. For rigorous conclusion, first lab results will write with first set of uncertainty 

and second lab results will use the second set. Justification for uncertainty changes is in section: 

Uncertainty in Data Collection and round up to 1 significant digit.  

3. Procedure and Results 

3.1 Period Dependency on Amplitude 

First experiment determines the period from different released amplitude from both positive and 

negative range, starting from 10 ± 1° with an increment of 10° each up to 80 ± 1°, similar for negative 

angles. The period was calculated by recording the time elapsed for 5 oscillations, starting and ending 

in central 0° line then divided by 5. The primary data shown in figure 4 reveals an even polynomial 

relationship. 

 

Fig 4. Period measured per 5 oscillations in terms of initial released amplitude and residual graph of 

period fit into quadratic relation. Uncertainties show in blue line 
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The residual graph also indicates a relative symmetric pattern, with the greatest difference of 0.02s 

in period for each pair of corresponding positive and negative angles. Since the period uncertainty is 

also 0.02s justified in section: Uncertainties in Data Collection, the deviation of period from different 

sides of pendulum is negligible, and we can claim the pendulum is symmetrical.  

 

Fig 5. Range of amplitudes when period is constant 

By removing data points in figure 4 with greatest amplitude which are extreme data that do not 

agree with the prediction that period is independent from amplitude, Python program generates figure 

5 by building model using equation (7). The calculated constants B = −0.003 ±  0.005 and𝐶 =
0.04 ±  0.02. As B is smaller than its uncertainty, and C is up to two times larger than its uncertainty, 

we can claim B is experimentally 0 and C is consistent with 0. Therefore, within the range of -20 ~ 

30 ± 1°, period is unaffected by amplitude.  

3.2 Q Factor Calculation 

The second experiment was conducted to calculate Q factor using two methods. Through recording 

a full oscillation started from 40 ± 1° and measuring the maximum amplitude and time elapsed for 

each 10 cycles, as shown in figure 6, equation (4) could model the relationship between maximum 

amplitude and time.  

 

Fig 6. Measurements of maximum amplitude vs time elapsed. An exponential decay pattern is 

observed 

Plotting the data in Python gives value of b in equation (4), which can use to calculate τ thus Q 

using equation (5). The value of period is selected as the one unaffected by amplitude calculated from 

figure 5, which gives Q = 267 ± 30. Using the second method: count number of oscillations, the 

measured Q = 417 ± 100 by recording data from amplitude of 18.4 ~ 9.0 ± 1° , which decays 48.9% 
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for 95 oscillations as shown in figure 7. Using equation (6), applying the average calculation and 

follow the largest uncertainty percentage rule, the final Q factor has: 

 𝑄 = 342 ± 60 

Two calculated Q factors only overlap 2% accounting uncertainty, which means they are highly 

unagreed with each other. One possible hypothesis is the differences in released amplitude. Since the 

first method has a greater starting degree, it releases more energy with larger decaying rate during the 

first several oscillations, which lower the average Q factor as it takes fewer oscillations to come to a 

complete stop. The second method has a much smaller initial amplitude, therefore the rate of energy 

lost is also small. 

 

Fig 7. Data are recorded for each 5 oscillations at maximum amplitude; fit in a sinusoidal relation 

In addition, τ modelled in figure 6 and in figure 7 has ∆τ ≈ 21𝑠, which gives ∆Q ≈ 50 that falls 

in the uncertainty range of final Q value. Therefore, we may conclude that even if two Q values 

deviates much based on different method of measurements, the resultant Q value is still relatively 

consistent with data considering the different released amplitude and the nature of decaying energy 

trend.  

However, in section: Length Dependency on Q Factor, with controlled released amplitude and 

pendulum length, Q factor in two methods demonstrates unusual correlation. It suggests the 

complexity of Q is being influenced by multiple factors and any slight changes to one factor may 

result in disagreement of Q value for two methods. Detailed discussion is written in that section. 

In general, higher Q value is preferred as it represents a more theoretical model of pendulum that 

have a constant rate of energy lost. The deviations in two Q values may result from a combination of 

mistaken choices of experimental design, limited methods to reduce uncertainties and insufficient 

data collection. All these possibilities will be examined in the whole section: Analysis and Discussion 

to derive a final statement of whether two methods are consistent with each other. 

3.3 Period Dependency on Length 

All 15 trials from length 48.3 to 14.4 cm for determining the length dependency of period are less 

than 30 ± 4°, which was determined to be the maximum amplitude threshold so that period is 

considered unaffected by amplitude. 

Fitting the measured period and length into equation (9) as shown in figure 8, the power law gives 

slope 𝑘 and intercept 𝑛 as: 

 𝑘 = 2.01 ± 0.04 𝑠2𝑚−𝑛 

 𝑛 = 0.55 ± 0.02  
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Fig 8. Data collected from length of 48.3 to 14.4cm fit in power relationship. 

By inspecting equation (8), which gives the theoretical period that only works for small amplitude, 

it gives slope 𝑘 and intercept 𝑛 as: 

𝑘 ≈ 2.0 𝑠2𝑚−𝑛 

𝑛 ≈ 0.5 

The maximum deviations of 𝑘  is 1.5% − 2.5%  and that of 𝑛  is 6.0% − 14%  using the 

extremes of actual 𝑘 and n value. Even if the percentage difference for n is relatively large to be 

considered the same, I still claim equation (9) is consistent with equation (8) because the released 

amplitude is just below the threshold where the period is unaffected, and the angle may exceed that 

threshold due to human error. 

To verify the claim, log-log graph in figure 9 is also plotted by manually calculating the natural 

log of length and period. The new equation (10) indicates the slope becomes 𝑛 and y intercept is 

ln(𝑘) in figure 9. Performing some backward calculations give: 

𝑘 = 2.05 ± 0.03 𝑠2𝑚−𝑛 

𝑛 = 0.57 ± 0.02 

 

Fig 9. Applying ln to figure 8 to get log-log graph 

The maximum variations of 𝑘 and 𝑛 in this case is 4% and 14% respectively. Therefore, it also 

roughly agrees with the theoretical model. 

3.4 Q Factor Dependency on Length 

Methods of modelling pendulum motion and counting number of oscillations are both used to 

calculate Q factor even if only one is required. Considering the average of 150 units variations in Q 
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factor calculated with different methods in section: Q Factor Calculation, without logical reasonings 

for this great difference, there is no convincing justification to prefer one method over the other.  

 

Fig 10. Q factor from modelling method in terms of length fit in power law function 

Results from both methods are fit into rational function 𝑄 =
𝑎

𝐿−ℎ
+ 𝑘, quadratic function 𝑄 =

𝑎𝐿2 + 𝑏𝐿 + 𝑐 , power law function 𝑄 = 𝑘𝐿𝑛 , linear function 𝑄 = 𝑚𝐿 + 𝑏, exponential function 

𝑄 = 𝑎𝑒𝑏𝐿 , and polynomial function 𝑄 = 𝑎(1 + 𝑏𝐿 + 𝑐𝐿2 + 𝑑𝐿3)  (see Appendix). The best 

relationship for modelling method is power law, given: 

𝑘 = 150 ± 20 𝑠2𝑚−𝑛 

𝑛 = 0.83 ± 0.1 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑘 = 12% 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑛 = 12% 

as shown in figure 10. Uncertainty percentage is the ratio of the actual values over uncertainties 

generated from Python program times 100. The best relationship for the counting method, however, 

is difficult to select between linear and power law indicated in figure 11 and 12 as linear relationship 

has:  

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑚 = 42% 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑏 = 9.7% 

while that for power law relationship is: 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑘 = 12% 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑛 = 36% 

 

Fig 11. Q factor from counting method in terms of length fit in linear function 
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Fig 12. Q factor from counting method in terms of length fit in power law function 

For experimental accuracy, I claim that none of the tested relationships could fit the data derived 

from counting method, as the greatest uncertainty for constants m and n is almost half of the actual 

value. For the modelling data, power law may be used to determine Q factor dependency which also 

match the theory if we modified equation (5) into the power law form: 

 𝑄 =
𝜋𝜏

2
× 𝐿

−1

2  (11) 

by substituting equations (2) and (8).  

It is mathematically supported that the modelling method gives a more reliable estimate of Q factor 

dependency on length due to smaller uncertainties. Counting method on the other hand produces a 

weak negative association that is also under expectation since the initial released and final amplitude 

measurements are purely based on raw eyes without any precise instruments, which is an extremely 

critical flaw for using this method as the calculation only requires one difference in initial and final 

amplitude. 

4. Analysis and Discussion 

4.1 Uncertainties in Data Collection 

All uncertainties for raw data collection that are not obtained by Tracker are determined by half 

of the most accurate digit that can measure from the measuring devices and will be automatically 

round to 1 significant digit. Time uncertainty is practically determined in 30fps even though the 

device could record up to 60fps. The reason is half of the uncertainty differences between 60 and 30 

fps, Δ𝑡 ≈ 0.02𝑠, is negligible when we divided by total number of oscillations. In this case using 95 

oscillations from figure 7, we get 
∆𝑡

95
≈ 2.1 × 10−4𝑠. Therefore, we could process data in 30fps 

without missing any time uncertainty.  

The distance to mass centre also presents uncertainty, giving the top quarter of the object is its cap 

with mass ≈ 7.6 ±  0.5𝑔, which weighed much less than the body. Performing some basic ratio 

calculations involving object height, the theoretical mass centre should be 2.3cm below the top of 

object cap, while the actual measured distance is 2.5cm. Using the equation (8) to estimate period, it 

results ∆𝑇 ≈ 0.03𝑠 , which has the same magnitude as the time uncertainty. Since period is 

proportional to Q factor, the relative variations in Q will be similar to that in period. 

Another type of uncertainty in length revealed after the modification of experimental setup, which 

is caused by non-parallel surface of object to platform due to imperfection of human eyes in tying 

two strings to same height. In reality, one string must be less than the other, causing the mass centre 

to shift location as shown in figure 13. Since the mean difference threshold for stimulus length under 

nonsimultaneous condition is 2.64mm [6], the assumption that eyes can only detect maximum 3mm 

length difference is acceptable. Another assumption is made that the mass centre will shift exactly in 
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the same direction as the longer spring with the same magnitude equal to the exceeded length. Hence, 

the estimated uncertainty is ± 3𝑚𝑚. Add the ± 1𝑚𝑚 from accuracy of length measurement, the 

actual uncertainty in length should be ± 4𝑚. 

 

Fig 13. Visual representation of length uncertainty for non-parallel object surface 

Even if the experimental setup and environment has been modified, the ambiguity of the location 

of the mass in recorded video is still unavoidable, which results in angle uncertainty. The estimated 

location variation is set as the largest range of possible uncertainty, the radius of object, ∆𝑥 ≈ 0.9𝑐𝑚. 

Using the basic trigonometry and distance to mass centre in lab 1, we calculate the angle uncertainty 

∆𝜃 ≈ 1.2°. While this uncertainty is acceptable for greater released angle, it becomes a serious issue 

while collecting sample data to plot figure 7. As the amplitude interval is only 9.4°, angle uncertainty 

is almost 13% of the whole interval.  

For further experiments in determining length dependency, angle uncertainty varies as distance 

from mass centre changes, with maximum ±4° to minimum ±1° calculated based on the longest 

and shortest length 48.3𝑐𝑚 and 14.4𝑐𝑚 respectively. Using a sample data from figure 10 and 

recalculate Q using counting method including uncertainty, the range of Q factor uncertainties is 

±30 ~ ± 90, which on average is ≈ 6% ~ 18% to the actual Q. The shorter the distance, the greater 

the angle uncertainty thus greater error in Q factor calculation. There is currently no direct solution 

to minimize the angle uncertainties without technical equipment other than smartphone camera.  

4.2 Experimental Setup Deficiency 

There are three major flaws in the original experimental setup. First, even though the object is set 

very close to the standing wood, it does not prevent 3D oscillations, which is extremely critical to 

measurement accuracy. The object may hit the wood within 15 oscillations if the initial amplitude is 

above 20 ± 1° for careless release. It is also the major reason of choosing 18.4 ± 1° in section: Q 

Factor Calculation using counting oscillations method to find Q value instead of matching the 40 ± 

1° for modelling method.  

The second flaw is the setup is too sensitive to perturbations that the air flow from air conditioner 

will cause the object keeps rotating for majority of the time. Although the implications and degree of 

influence of this additional rotational motion is uncertain, it could possibly lead to other complex 

types of faults. Another evidence is the preference of positive amplitude over negative for constant 

period threshold in figure 5. Since warm air is blowing from positive to negative side in original setup, 

there is a possibility that for the first several oscillations, the air contributes to the swing that increase 

the tangential speed and thus reduce the period from positive to negative direction and vice versa. 

Therefore, the variance of period in positive amplitude will decrease and that in negative will increase. 

Solution to both flaws was implemented and described in section: Experimental Method. Additionally, 

avoid any extra flowing air that may increase the complexity of the system. 
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The third flaw is although it is better to use lighter spring to reduce effect of spring mass on 

pendulum system, the width of spring should not be less than 0.2 ± 0.1 mm, which is the original 

spring width used in experiment. When the light is projecting on spring, sometimes the shadow is 

barely seen due to interference of artificial light source and natural light source which cause 

continuous adjustments in camera light exposure. The higher the exposure value, the harder for eyes 

to identify shadows. We can either replace the string with a thicker one or perform the experiment at 

night to reduce natural light source to minimum, which were applied in the modified setup. 

The fourth flaw in design raised up after the setup modification due to that extra added wooden 

stick, which is not securely attached to the platform, causing the whole pendulum system to shake 

slightly for first one or two oscillations. Influence of this flaw is not clearly determined but could be 

estimated. Using the conservation of energy, the ideal system uses all potential energy to keep the 

object swinging while the actual system required some energy to resist vibration of wooden stick, 

leaving less energy remaining for object oscillations. Thus, the measured Q factor would decrease 

assuming the damping ratio (𝜏) is the same. To fix this issue, we can simply replace the stick with a 

new one and skewing it tightly to the platform. 

4.3 Period Dependency on Amplitude  

While the experimental setup certainly has other flaws that require improvements, all experiment 

results clearly imply the nature of period is non-linear and is dependent on amplitude as the initial 

amplitude exceeds certain range, in this case -20 ~ 30 ± 1°. The equation (8) holds true with ∆𝑇 ≈
0.004 ~ 0.014𝑠 within the range of -30 ~ 30 ± 1° by comparing the theoretical calculated period 

and actual modelled period. The variations are experimentally 0 since ∆𝑇 < 0.02𝑠, less than the 

uncertainty for time measurements. However, as the released amplitude increase, theory does not hold 

true anymore. 

As shown in figure 14, the forces exert on mass is 𝑚𝑔 and 𝑇 in an oscillating motion. Tension 

force and vertical component of gravitational force sum up to 0, leaving −𝑚𝑔𝑠𝑖𝑛(𝜃) the only force 

exert on mass if treating right direction as positive. Replacing this force in 𝐹 = 𝑚𝑎 we get: 

𝑎𝑡𝑎𝑛 = −𝑔𝑠𝑖𝑛(𝜃) 

If we replace tangential acceleration with angular acceleration using 𝑎𝑡𝑎𝑛 = 𝑟 × 𝛼 [7], we have: 

 𝛼 =
−𝑔𝑠𝑖𝑛(𝜃)

𝐿
 

 

Fig 14. Free body diagram of a swinging mass in pendulum. Image obtained from website [8] 

In theory, equation (8) is derived by assuming 𝑠𝑖𝑛(𝜃) ≈ 𝜃[9], which gives 𝛼 =
−𝑔𝜃

𝐿
, a linear 

relationship between 𝛼  and 𝜃 . However, the real 𝛼  has smaller magnitude when 𝜃  exceeds 

~0.5rad, as indicated in figure 15.  
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Fig 15. Graphing theoretical and actual 𝛼 functions in terms of 𝜃 using Desmos [10] 

If we manually pick the red function in figure 15 as x-axis, the deviations of blue function 𝛼 in 

terms of the x-axis is “quadratic-like”. Since smaller acceleration results in larger period, and 𝛼 is 

proportional to square of angular speed, and speed is also proportional to period in equation (2), it 

explains the even polynomial relationship between practical period and amplitude in figure 4.  

4.4 Q Factor Dependency on Length 

The big trend of Q factor vs length is decreasing for both calculating methods, which is difficult 

to justify systematically but could be explained using theoretical equation (11). Assuming 𝜏  is 

constant, the relationship between Q and L is inversely proportional. 

However, 𝜏 is not a constant in reality, as it measures the viscosity of the whole pendulum system 

which is affected by so many factors such as humidity and instantaneous adhesion between surfaces. 

It is the major cause of the irrelevance between Q and L by inspection in figure 16.  

 

Fig 16. Variations in Q factor calculations from counting and modelling methods 

From 21.6cm to 14.4cm, the measured Q factor from counting is less than that from modelling, 

while from 32cm to 24.6cm two methods highly agree with each other. The difference of Q factor 

between 34.6cm to 48.3cm is roughly the same from two methods. We can at least conclude from 

experimental results that the instantaneous 𝜏 by modelling in greater length is less than that by 

counting, in medium length is similar and in shorter length is greater. 

There are two major factors required to consider for deviations in 𝜏: Tension Force and Air 

Resistance. Assuming object is in static motion and experience symmetrical forces, as the length 
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decrease, the tension force will increase since the x components of spring increase due to larger angles 

while y components remain the same for same weight as shown in figure 17. Given 𝐹𝑓 = 𝜇𝑁, greater 

N (tension force in this case) indicates greater friction force thus more thermal energy is released 

from the rubbing effect between the connections of spring and nail, decreasing 𝜏 thus reducing the 

actual Q factor.  

Since period data is collected under amplitude independence, greater length means further distance 

to travel per oscillation thus greater wavelength. From general equation 𝑇 =
𝜆

𝑣
, it is evident that 

maximum velocity for greater length is larger than that with smaller length. Since air resistance is 

proportional to velocity squared by theory from drag equation 
𝐹𝑎𝑖𝑟
→  = −

1

2
𝜌𝐴𝐶 |

𝑣
→|

2
𝑣̂ [11], it is 

mathematically proved that greater length results in greater air resistance, which does more negative 

work on the system as the resistance force direction is always opposite to the direction of motion thus 

decreasing 𝜏 and reducing Q factor.  

 

Fig 17. Visual demonstration for greater tension force in shorter length 

A hypothesis is that two Q factor calculation methods weigh these two factors differently: counting 

reflects the reality of tension force while modelling reflects more on the effect of air resistance. 

However, performing logical justification requires advanced research, therefore a final statement to 

conclude trends in figure 16 is not provided.  

5. Conclusion  

In conclusion, it appears the damped harmonic oscillator does not fully describe a swinging 

pendulum system. Period could only be considered amplitude independent within -20 ~ 30 ± 1°, but 

the amplitude does decays exponentially so does the energy lost. 𝑇 = 2√𝐿  returns perceptible 

deviations for greater amplitude. Two Q factor measurements do not agree with each other, providing 

one could fit into the power law relationship while the other have little association to all 6 tested 

functions. Q factor does not reveal any strong relationship with length except providing a big image 

that as length increases, Q factor decreases. 

For future experiments, repeated data collections are encouraged to reduce the effect of angle and 

length measurement variances, which are considered as the largest uncertainty in this lab. It also helps 

discover and quantify additional factors which may affect Q factor and 𝜏 other than length. It would 

be ideal to record data with a professional measurement instrument and using some systematics 

methods to determine uncertainty based on raw data. 
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